Main Article Content

Abstract

Tuberculosis (TB) is a contagious airborne disease caused by Mycobacterium tuberculosis, which primarily affects human lungs. The progression of drug-susceptible TB to drug-resistant strains, MDR-TB and XDR-TB, has become worldwide challenge in eliminating TB. The limitations of conventional TB treatment including frequent dosing and prolonged treatment, which results in patient’s noncompliance to the treatment because of treatment-related adverse effects. The non-invasive pulmonary drug administration provides the advantages of targeted-site delivery and avoids first-pass metabolism, which reduced the dose requirement and systemic adverse effects of the therapeutics. With the modification of the drugs with advanced carriers, the formulations may possess sustained released property, which helps in reducing the dosing frequency and enhanced patients’ compliances. The dry powder inhaler formulation is easy to handle and storage as it is relatively stable compared to liquids and suspension. This review mainly highlights the aerosolization properties of dry powder inhalable formulations with different anti-TB agents to understand and estimate the deposition manner of the drug in the lungs. Moreover, the safety profile of the novel dry powder inhaler formulations has been discussed. The results of the studies demonstrated that dry powder inhaler formulation has the potential in enhancing treatment efficacy.

Keywords

Tuberculosis lung physiology advanced drug delivery lung delivery

Article Details