Journal of Pharmacreations

PharmaCreations

Pharmacreations | Vol.3 | Issue 1 | Jan- Mar- 2016 Journal Home page: www.pharmacreations.com

Research article

Open Access

New RP HPLC method for the simultaneous estimation of terbutaline and theophylline in pharmaceutical dosage form

M. Sambasiva Rao, A. Sunil Kumar Reddy, A. Ashok Kumar

Professor & HOD OF Vijaya College of pharmacy, Munaganur (village), Hayathnagar (Mandal), Ranga redy (District), Pin-501511. *Corresponding author: A. Ashok Kumar

*Corresponding author: A. Ashok Kuma Email: ashok576@gmail.com

ABSTRACT

A simple and selective LC method is described for the determination of Terbutaline and Theophylline dosage forms. Chromatographic separation was achieved on a c_{18} column using mobile phase consisting of a mixture of 20Mm Phosphate buffer (KH2PO4) pH: 3.5 Acetonitrile (80:20v/v/v), with detection of 250 nm. Linearity was observed in the range 1.25-3.75 µg /ml for Terbutaline (r^2 =0.9975) and 50-150/ml for Theophylline (r^2 =0.9994) for the amount of drugs estimated by the proposed methods was in good agreement with the label claim. The proposed methods were validated. The accuracy of the methods was assessed by recovery studies at three different levels. Recovery experiments indicated the absence of interference from commonly encountered pharmaceutical additives. The method was found to be precise as indicated by the repeatability analysis, showing %RSD less than 2. All statistical data proves validity of the methods and can be used for routine analysis of pharmaceutical dosage form. Key words: Phosphate buffer (KH2PO4) pH: 3.5 Acetonitrile (80:20v/v/v), Terbutaline and Theophylline

INTRODUCTION

High Performance Liquid Chromatography is the most widely used of all the analytical separation techniques. The reasons for its popularity are its sensitivity, ready adaptability to quantitative determination, suitable for nonvolatile and thermally fragile species, wide applicability to variety of substances such as amino acids, carbohydrates, nucleic acids, proteins, hydrocarbons, terpenoids, pesticides, steroids, metal-organic species and inorganic species. As high pressures (around 3000 psi) are used for the separation of the analytes down the column, it is often termed as High Pressure Liquid Chromatography. ^{4, 5, 6}

Types of HPLC

HPLC is classified into various types

Based on polarity of stationary and mobile phase

- Normal Phase Chromatography
- Reverse Phase Chromatography

Based on the principle of separation

- Adsorption Chromatography
- Partition Chromatography
- Ion Pair Chromatography
- Size Exclusion Chromatography
- Chiral Phase Chromatography

Based on elution technique

- Isocratic Elution
- Gradient Elution

Based on scale of operation

- Analytical HPLC
- Preparative HPLC

Based on the polarity of the stationary phase and the mobile phase, it is of two types:

Normal Phase (NP) HPLC

In this type, the stationary phase is polar and the mobile phase is non-polar, polar compounds are retained for a longer periods because of more affinity towards the stationary phase, hence nonpolar compounds travel faster and are eluted first.

Reverse Phase (RP) HPLC

In this type, the stationary phase is non-polar and the mobile phase is polar, non-polar compounds are retained for longer periods as they have more affinity towards the stationary phase. Hence, polar compounds travel faster and are eluted first.^{3, 4,5,6}

AIM AND PLAN OF WORK Aim

To develop new RP HPLC method for the simultaneous estimation of TERBUTALINE & THEOPHYLLINE in pharmaceutical dosage form.

Plan of work

- Solubility determination of Terbutaline & Theophylline in various solvents and buffers.
- Determine the absorption maxima of the drug in UV–Visible region in different solvents/buffers and selecting the solvents for HPLC method development.
- Optimize the mobile phase and flow rates for proper resolution and retention times.
- Validate the developed method as per ICH guidelines.

METHODOLOGY Mobile Phase

A mixture of 80 volumes of Phosphate buffer pH 3.5:20volumes of Acetonitrile. The mobile phase was sonicated for 10min to remove gases.

Determination of Working Wavelength (λmax)

In simultaneous estimation of two drugs isobestic wavelength is used. Isobestic point is the wavelength where the molar absorptivity is the same for two substances that are interconvertible. So this wavelength is used in simultaneous estimation to estimate both drugs accurately.

Preparation of standard stock solution of TERBUTALINE

50 mg of Terbutaline was weighed and transferred in to 500ml volumetric flask and dissolved in methanol and then make up to the mark with methanol and prepare 10 μ g /ml of solution by diluting 1ml to 10ml with methanol.

Preparation of standard stock solution of THEOPHYLLINE

50mg of Theophylline was weighed in to 500ml volumetric flask and dissolved in Methanol and then dilute up to the mark with methanol and prepare 10 μ g /ml of solution by diluting 1ml to 10ml with methanol.

RESULTS AND DISCUSSION Solubility Studies

These studies are carried out at 25 °C

Terbutaline

Soluble in methanol, sparingly soluble in DMSO, insoluble in Water,.

Theophylline

Freely Soluble in Methanol. Slightly Soluble in Water and DMF.

Wavelength determination

The wavelength of maximum absorption (λ_{max}) of the drug, 10 µg/ml solution of the drugs in methanol were scanned using UV-Visible spectrophotometer within the wavelength region of 200–400 nm against methanol as blank. The resulting spectra are shown in the fig. no. 1, 2 and 3 and the absorption curve shows characteristic absorption maxima at 241 nm for Terbutaline and Theophylline 278 and 250 nm for the combination.

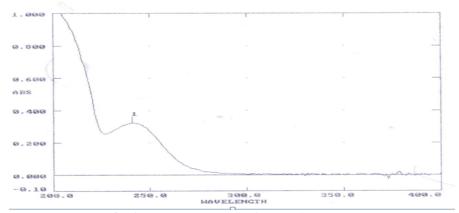


Fig. 1: UV-VIS spectrum of terbutaline

 λ_{max} was found to be 241 $\,$ nm for Terbutaline shown in the figure 1 $\,$

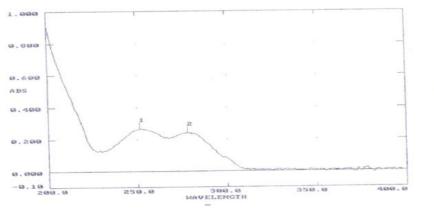
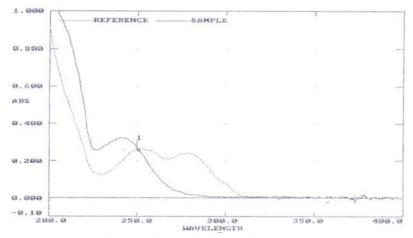
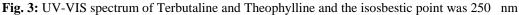
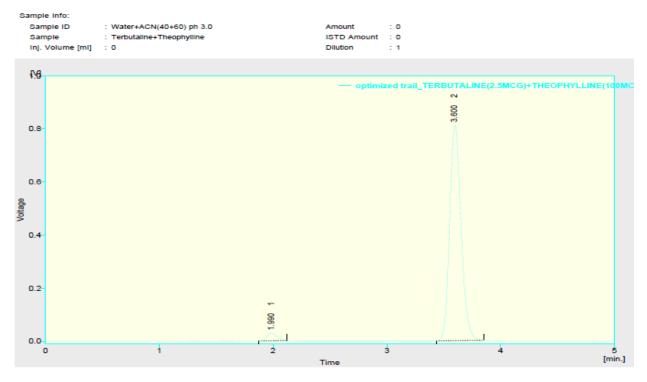




Fig. 2: UV-VIS spectrum of Theophylline

Observation

 λ_{max} was found to be 278 $\,$ nm for Theophylline shown in the figure 2 $\,$

The Isosbestic point was found to be 250nm for Terbutaline and Theophylline in combination and was shown in figure 3


METHOD DEVELOPMENT OF TERBUTALINE & THEOPHYLLINE Trial- 4

Preparation of mixed standard solution

weigh accurately 2.5mg of Terbutaline and 100 mg of Theophylline in 100 ml of volumetric flask

and dissolve in 10ml of mobile phase and make up the volume with mobile phase From above stock solution 2.5 μ g/ml of Terbutaline and 100 μ g/ml of Theophylline is prepared by diluting 1ml to 10ml with mobile phase. This solution is used for recording chromatogram.

HPLC CHROMATOGRAM

Result Table (Uncal - optimized trail_TERBUTALINE(2.5MCG)+THEOPHYLLINE(100MCG))

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]
1	1.990	179.164	28.814	3.1	3.4	0.10
2	3.600	5641.595	811.392	96.9	96.6	0.11
	Total	5820.759	840.206	100.0	100.0	

Column Performance	Table	(From	50%	 optimized 	
--------------------	-------	-------	-----	-------------------------------	--

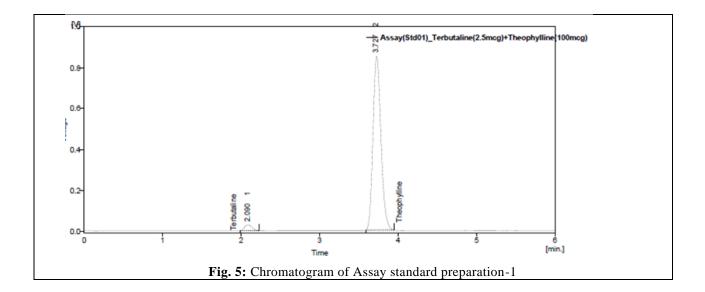
trail_TERBUTALINE(2.5MCG)+THEOPHYLLINE(100MCG))							
	Reten.	W05	Asymmetry	Capacity	Efficiency	Eπ/I	Resolution
	Time	[min]	[-]	[-]	[th.pl]	[t.p./m]	[-]
1	1.990	0.103	1.250	0.00	2055	20546	-
2	3.600	0.110	1.296	0.00	5934	59338	8.882

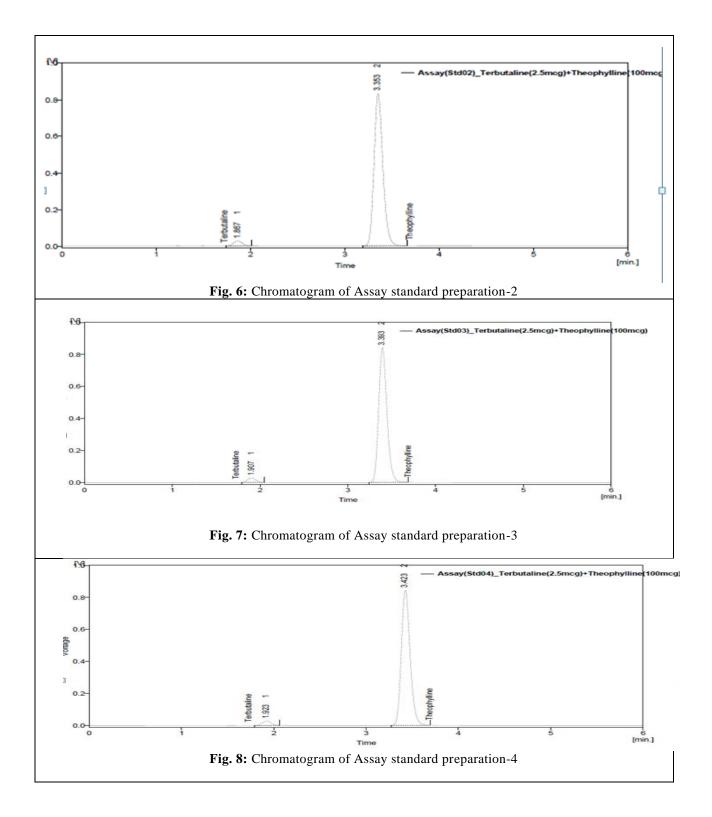
Fig. 4: Chromatogram of terbutaline and theophylline by using mobile phase.

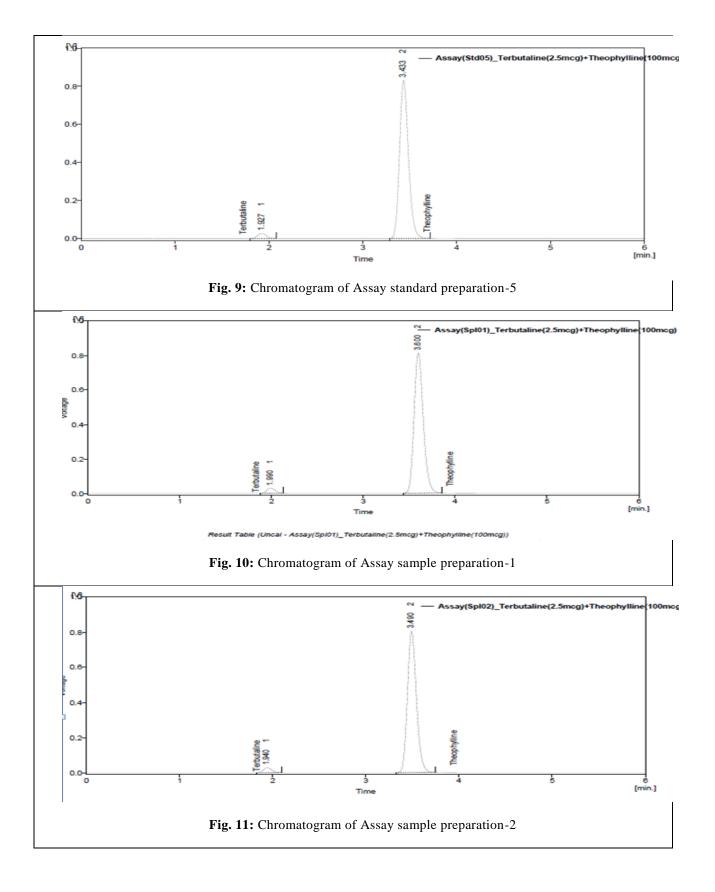
The peaks showed more efficiency and more resolution. Hence this method was optimised.

Table 1: Optimized chromatographic conditions				
Mobile phase	Phosphate buffer (KH2PO4) pH: 3.5 Acetonitrile (80:20v/v/v),			
pН	3			
Column	INERTSIL column,C18(150x4.6 ID) 5µm			
Flow rate	1.0 ml/min			
Column temperature	Room temperature(20-25°C)			
Sample temperature	Room temperature(20-25°C)			
Wavelength	250nm			
Injection volume	20 µl			
Run time	10 min			
Retention time	About 2.337 min for Terbutaline and 4.028min for Theophylline			

ASSAY Preparation of samples for Assay


Preparation of mixed standard solution


Weigh accurately 2.5mg of Terbutaline and 100 mg of Theophylline in 100 ml of volumetric flask and dissolve in 10ml of mobile phase and make up the volume with mobile phase From above stock solution 2.5 μ g/ml of Terbutaline and 100 μ g/ml of Theophylline is prepared by diluting 1ml to 10ml with mobile phase. This solution is used for recording chromatogram.


Preparation of sample solution

5tablets (each tablet contains 2.5mg of Terbutaline and 100mg of Theophylline) were

weighed and taken into a mortar and crushed to fine powder and uniformly mixed. Tablet stock solutions of Terbutaline $(25\mu g/ml)$ and Theophylline (1000µg/ml) were prepared by dissolving weight equivalent to 2.5mg of Terbutaline and 100 mg of Theophylline and dissolved in sufficient mobile phase. After that filtered the solution using 0.45-micron syringe filter and Sonicated for 5 min and dilute to 100ml with mobile phase. Further dilutions are prepared in 5 replicates of 2.5µg/ml of Terbutaline and 100 µg/ml of Theophylline was made by adding 1ml of stock solution to 10 ml of mobile phase.

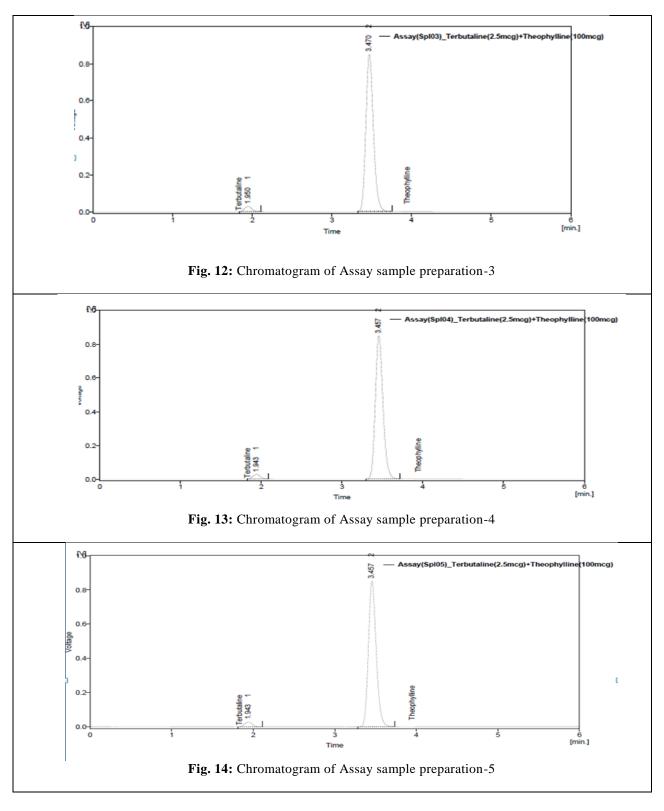


Table No.2: Assay Results

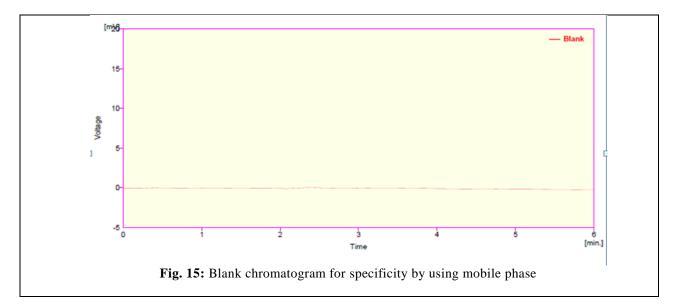
TERBUTALINE	TERBUTALINE TH			NE
	Standard Area	Sample Area	Standard Area	Sample Area
Injection-1	187.838	179.164	5678.797	5541.595

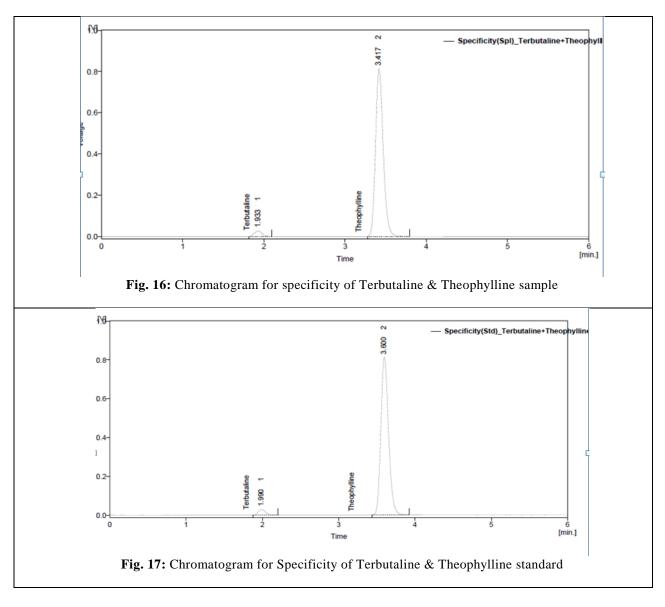
std. purity Amount found in mg	99.2 2.495		99.03 99.03	
Label amount	2.5mg 99.2		100mg 99.3	
Sample weight	150.75mg		150.75mg	
Standard weight	2.5mg		100mg	
Tablet average weight	150.75mg		150.75mg	
Average Area	179.902	181.039	5533.974	5518.92
Injection-5	179.681	185.581	5483.936	5614.223
Injection-4	179.819	180.499	5575.961	5406.592
Injection-3	176.601	184.101	5494.221	5523.567
Injection-2	175.570	175.851	5436.955	5508.623

The amount of Terbutaline and Theophylline present in the taken dosage form was found to be 99.60 and 99.03% respectively.

VALIDATIONS Specificity by Direct comparison method

There is no interference of mobile phase, solvent and placebo with the analyte peak and also the peak purity of analyte peak which indicate that the method is specific for the analysis of analytes in their dosage form.


Preparation of samples for Assay


Preparation of mixed standard solution

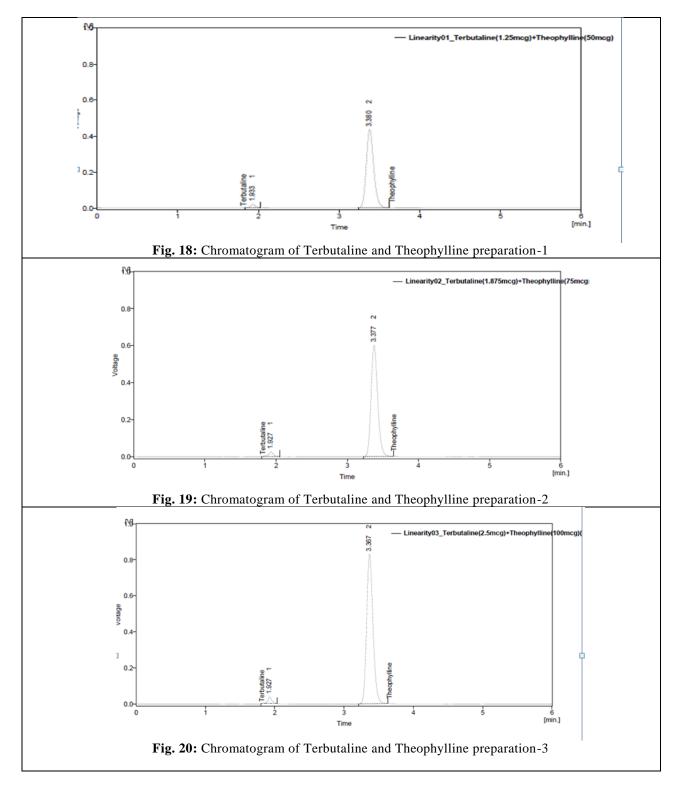
2.5 μ g/ml of Terbutaline and 100 μ g/ml of Theophylline solution is prepared with mobile phase. This solution is used for recording chromatogram.

Preparation of sample solution

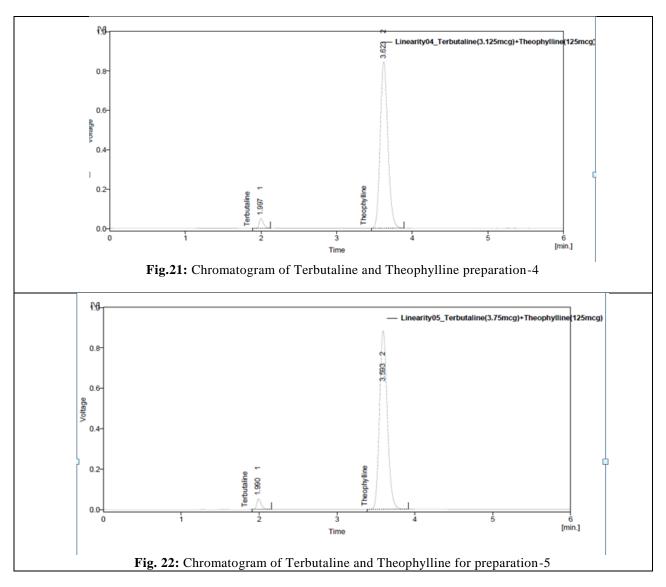
Stablets (each tablet contains 2.5mg of Terbutaline and 100mg of Theophylline) were weighed and taken into a mortar and crushed to fine powder and uniformly mixed. Tablet stock solutions of Terbutaline (25μ g/ml) and Theophylline (1000μ g/ml) were prepared by dissolving weight equivalent to 2.5mg of Terbutaline and 100 mg of Theophylline and dissolved in sufficient mobile phase. After that filtered the solution using 0.45-micron syringe filter and Sonicated for 5 min and dilute to 100ml with mobile phase. Further dilutions are prepared in 5 replicates of 2.5 μ g/ml of Terbutaline and 100 μ g/ml of Theophylline was made by adding 1ml of stock solution to 10 ml of mobile phase.

It is observed from the above data, diluent or excipient peaks are not interfering with the Terbutaline & Theophylline peaks.

Linearity and range


Preparation of mixed standard solution

Weigh accurately 2.5 mg of Terbutaline and 100 mg of Theophylline in 100 ml of volumetric flask and dissolve in 10ml of mobile phase and make up the volume with mobile phase. Further take 1ml into 10ml volumetric flask and make up to 10ml with mobile phase.


Table 3: Linearit	y Preparations
-------------------	----------------

Preparations	Volume from standard stock transferred in ml	Volume made up in ml (with mobile phase)	Concentration /ml)	n of solution(µg
			Terbutaline	Theophylline

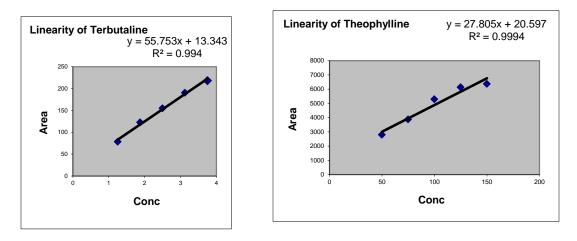
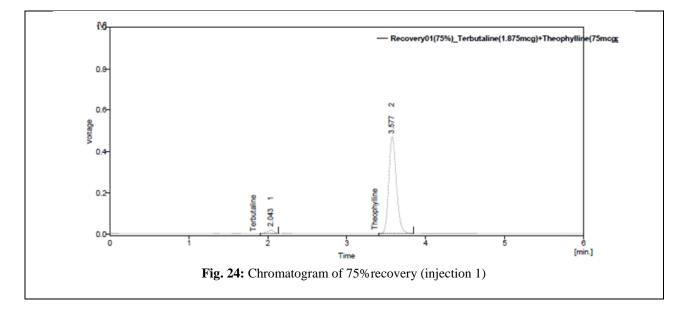
Preparation 1	0.0125	0.5	1.25	50
Preparation 2	0.0185	0.75	1.85	75
Preparation 3	0.025	1	2.5	100
Preparation 4	0.0315	1.25	3.15	125
Preparation 5	0.0375	1.5	3.75	150

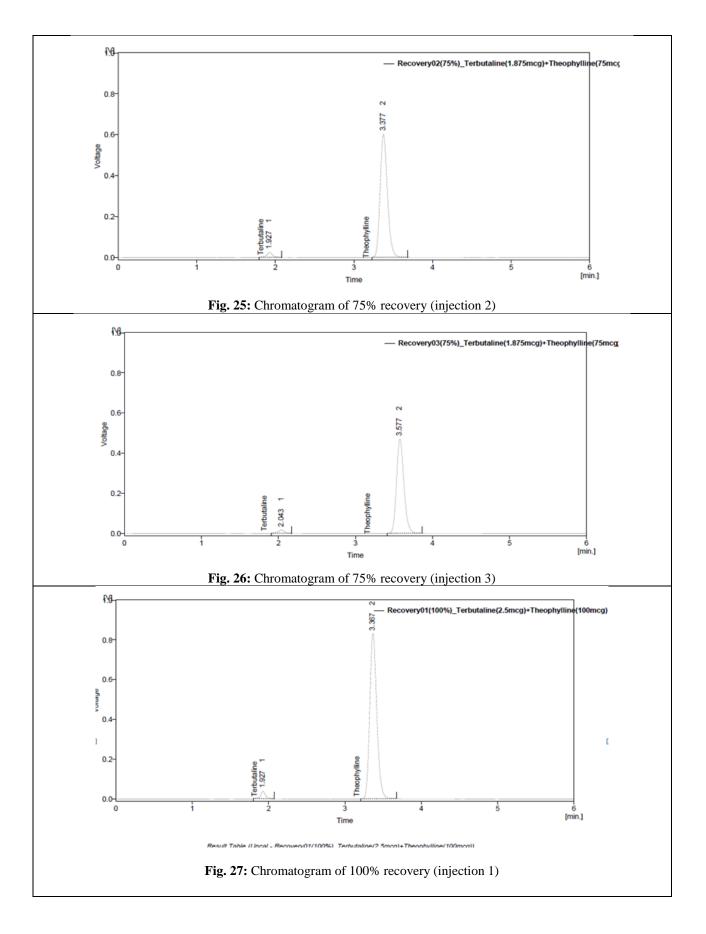
Ashok K A et al/Journal of Pharmacreations Vol-3(1) 2016 [40-63]

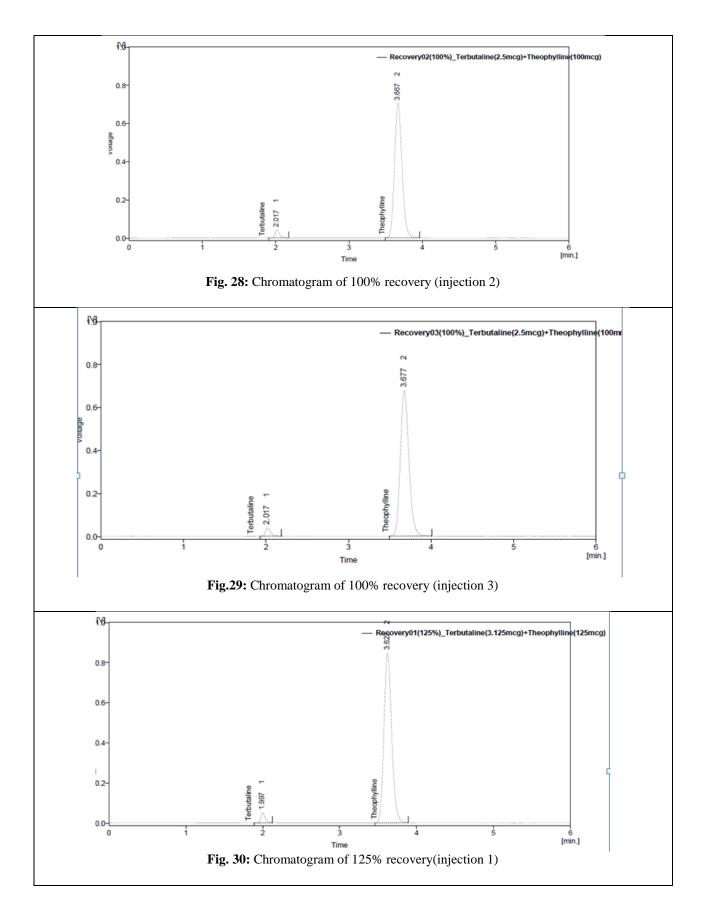
Labie	rubic in inicality of relocatalitie				
S.No.	Conc.(µg/ml)	Area			
1	1.25	78.029			
2	1.85	122.306			
3	2.5	154.766			
4	3.15	190.241			
5	3.75	218.291			

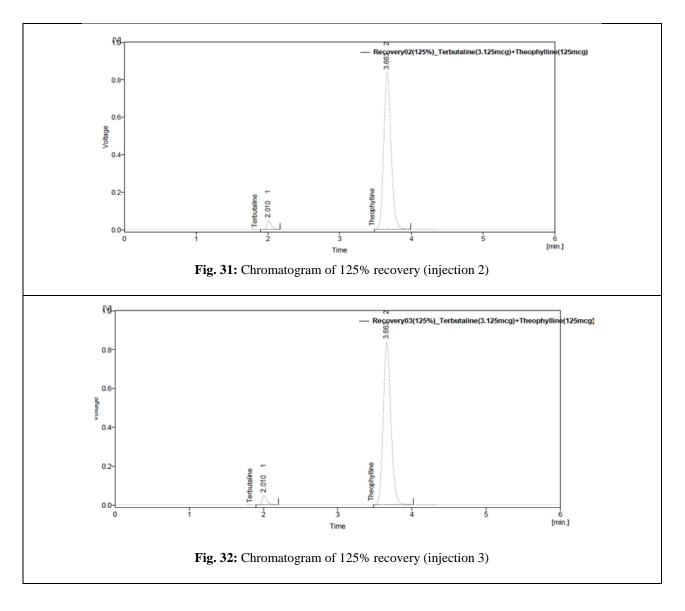
Table 9.3.8:	linearity of	of THIOCOL	CHICOSIDE
---------------------	--------------	------------	------------------

S.No.	Conc.(µg/ml)	Area
1	50	2790.728
2	75	3866.934
3	100	5285.723
4	125	6121.454
5	150	6361.533


Fig. 23: Linearity graph of Terbutaline And Theophylline


The correlation coefficient for linear curve obtained between concentration vs. Area for standard preparations of Terbutaline and Theophylline is 0.998 and 0.999. The relationship between the concentration of Terbutaline and Theophylline and area of Terbutaline and Theophylline is linear in the range examined since all points lie in a straight line and the correlation coefficient is well within limits.


ACCURACY

Accuracy of the method was determined by Recovery studies. To the formulation (pre analyzed sample), the reference standards of the drugs were added at the level of 75%, 100%, 125%. The recovery studies were carried out three times and the percentage recovery and percentage mean recovery were calculated for drug is shown in table. To check the accuracy of the method, recovery studies were carried out by addition of standard drug solution to pre-analyzed sample solution at three different levels 75%, 100% & 125%.

Acceptance criteria

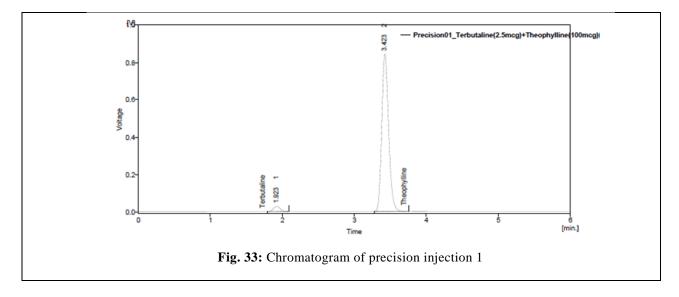
The % recovery of Terbutaline and Theophylline should lie between 98% and 102%.

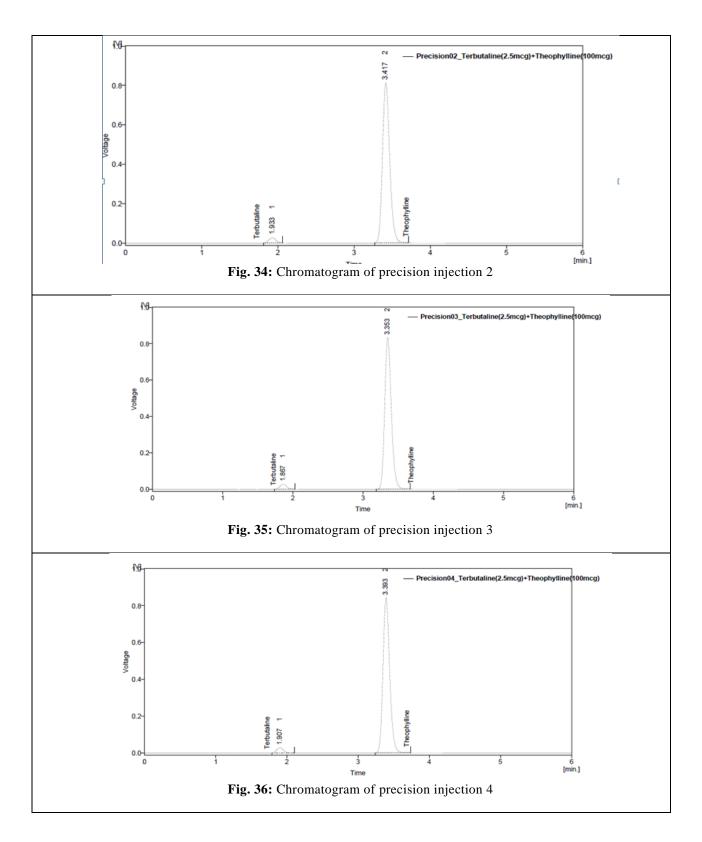
			5	results for Terbutaline		Average %
Recovery		Accuracy Terbutaline				
level	Amount	Area	Average	Amount	%Recovery	Recovery
	taken(mcg/ml)		area	recovered(mcg/ml)		
75%	1.87	92.288				
			95.500	1.86	99.01	
	1.875	95.414				
	1.875	98.797				
100%	2.5	166.024				
	2.5	165.944	166.230	2.47	98.98	99.49%
	2.5	166.723				
125%	3.125	190.241				

: Recovery results for Terbutaline Table 5

3.125	197.059 195.503	3.14	100.48
3.125	199.208		

Recovery	covery Accuracy Theophylline					Average %
level	Amount	Area	Average Amount		%Recovery	Recovery
	taken(mcg/ml)		area	recovered(mcg/ml)		
75%	75	3190.245				
	75	3270.81	3198.010	73.90	98.54	
	75	3132.976				
100%	100	5293.994				
	100	4982.116	5042.760	98.52	98.52	
	100	4852.17				99.12%
125%	125	5941.213				
	125	5944.656	5944.582	125.40	100.32	
	125	5947.876				


The percentage mean recovery of Terbutaline and Theophylline is 99.49% and 99.12% respectively.


PRECISION Method precision

Prepared sample preparations of Terbutaline and Theophylline as per test method and injected 6 times in to the column.

Acceptance criteria

The % Relative standard deviation of Assay preparations of Terbutaline and Theophylline should be not more than 2.0%.

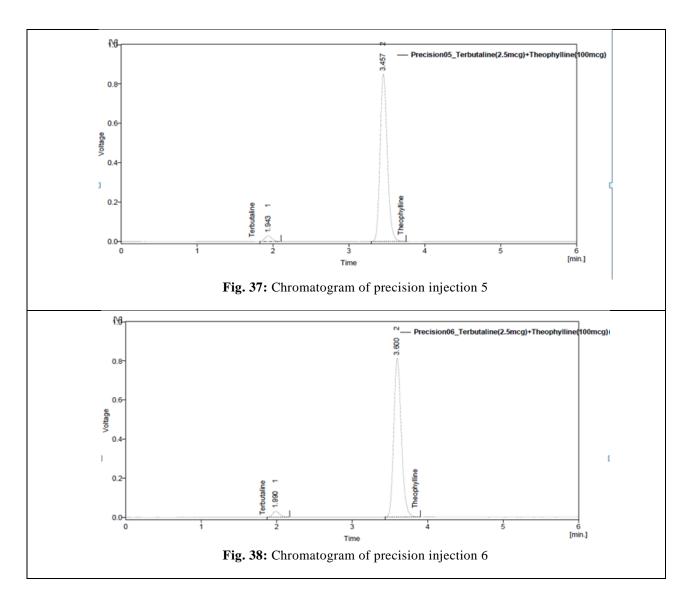
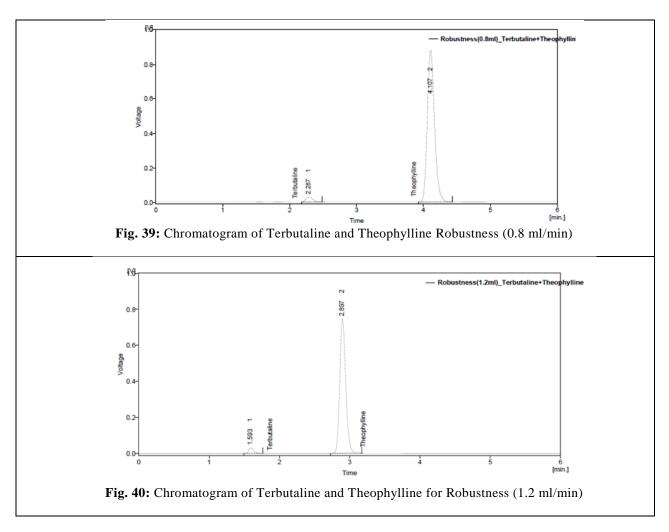
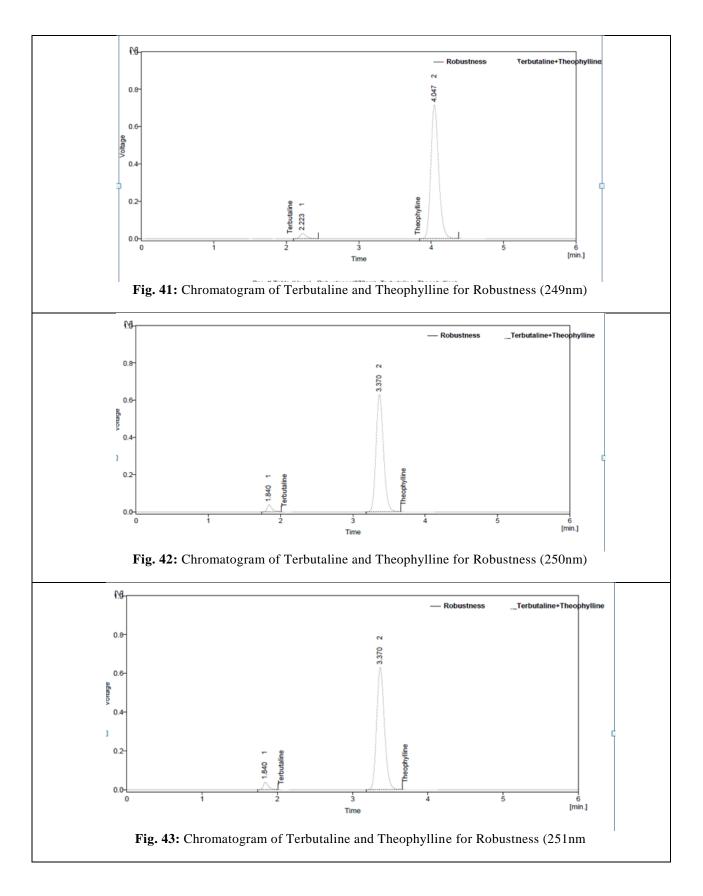


Table 7: Results for Method precision of Terbutaline and Theophylline

Terbutaline			Theophy	Theophylline		
S.No.	Rt	Area	S.No.	Rt	Area	
1	1.923	182.723	1	3.423	5585.32	
2	1.933	178.936	2	3.417	5418.603	
3	1.897	178.962	3	3.353	5438.747	
4	1.907	180.307	4	3.393	5499.970	
5	1.943	181.926	5	3.457	5516.145	
6	1.990	188.635	6	3.550	5645.393	
avg	1.9322	181.915	avg	3.432	5517.363	
stdev	0.0329	3.633	stdev	0.067	86.311	
%RSD	1.70	2.00	%RSD	1.96	1.56	

Test results for Terbutaline and Theophylline are showing that the %RSD of Assay results are within limits. The results were shown in table Table 7.


ROBUSTNESS Chromatographic conditions variation

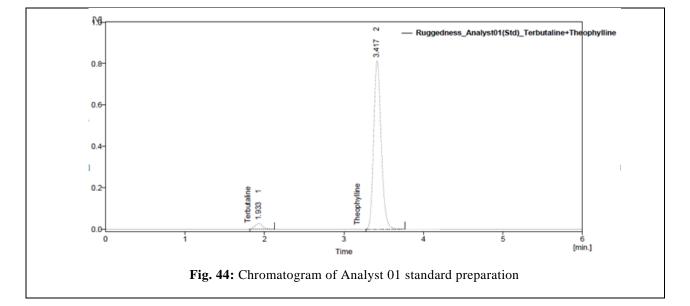

To demonstrate the robustness of the method, prepared solution as per test method and injected at

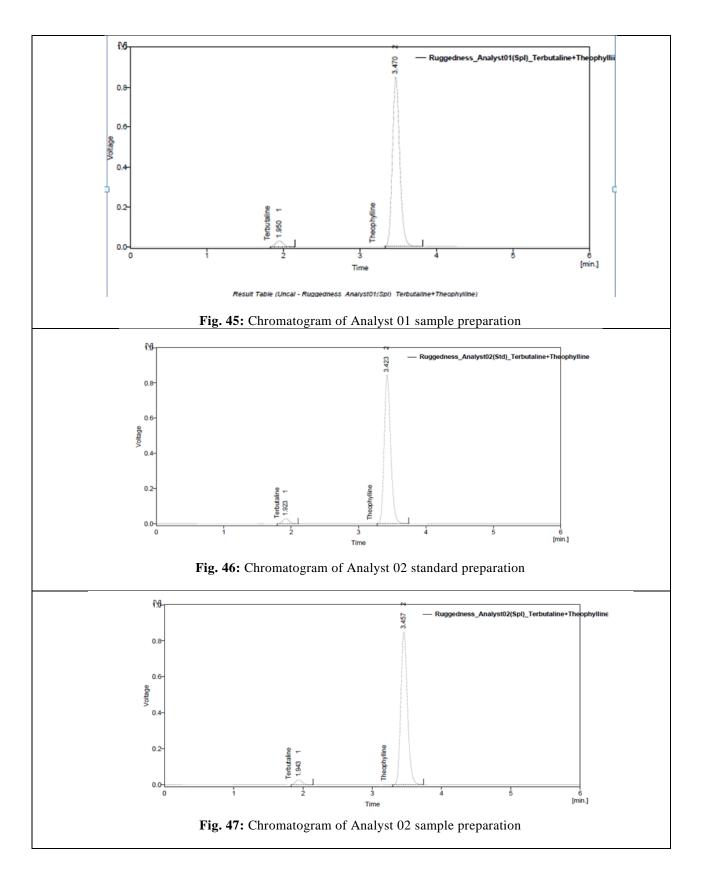
different variable conditions like using different conditions like Temperature and wavelength. System suitability parameters were compared with that of method precision.

Acceptance criteria

The system suitability should pass as per the test method at variable conditions.

Table 8: Result of Robustness study					
	Terbutaline		Theophylline		
Parameter	Retention time(min)	Tailing factor	Retention time(min)	Tailing factor	
Flow					
0.8ml/min	2.817	1.73	4.860	1.585	
1.0 ml/min	2.32	1.732	4.035	1.586	
1.2ml/min	2.022	1.72	3.487	1.57	
Wavelength					
249nm	2.367	1.722	4.080	1.571	
250nm	2.320	1.732	4.035	1.586	
251nm	2.367	1.741	4.082	1.585	


From the observation it was found that the system suitability parameters were within limit at all variable conditions.


RUGGEDNESS

The ruggedness of the method was studied by the determining the analyst to analyst variation by performing the Assay by two different analysts

Acceptance criteria

The % Relative standard deviation of Assay values between two analysts should be not more than 2.0%.

Table 9: Results for Ruggedness					
Terbutaline	%Assay	Theophylline	%Assay		
Analyst 01	97.99	Analyst 01	99.96		
Analyst 02	98.37	Analyst 02	97.59		
%RSD	0.27	%RSD	1.69		

From the observation the %RSD between two analysts Assay values not greater than 2.0%, hence the method was rugged.

CONCLUSION

From the above experimental results and parameters it was concluded that, this newly developed method for the simultaneous estimation

BIBLIOGRAPHY

- [1]. The Drugs and Cosmetics Act and Rules, 1940.
- [2]. Methods of Analysishttp://www.pharmatutor.org/pharma-analysis
- [3]. Douglas, A.; Skoog, F.; James, H.; Stanley, R. C. Liquid Chromatography. In *Instrumental Analysis*, 9th ed.; Cengage Learning India Pvt. Ltd.: New Delhi, 2007; 893 934.
- [4]. Skoog; Holler; Crouch; Liquid Chromatography. In *Instrumental Analysis*, Cengage Learning India.:New Delhi. 2011; 893.
- [5]. Chatwal, R. G.; Anand, K. S. High Performance Liquid Chromatography. In *Instrumental Methods Of Chemical Analysis*, 5th ed.; Himalaya Publishers.:Mumbai, 2010; 2.570 2.629.
- [6]. Sharma, B. K. High Performance Liquid Chromatography. In *Instrumental Methods Of Chemical Analysis*, 24th ed.; Goel Publishers.: Meerut, 2005; 295 300.
- [7]. Alfonso, R. G.; Ara, H. D. M.; Glen, R. H.; Thomas, M.; Nicholas, G. P.; Roger, L.S.; Steve, H. W. Chromatography. In *Remington: The Science and Practice of Pharmacy*, 20th ed.; Lippincott Williams & Wilkins: Philadelphia, 2000; 587
- [8]. Adsorption Chromatography- http://www.separationprocesses.com/Adsorption/AD_Chp05a.htm
- [9]. Adsorption Chromatography- http://cemca.org/andcollege/andcwebsite/subject01/CHEtext.pdf
- [10]. Types of Chromatography- http://www.separationprocesses.com/Adsorption/AD_Chp05a.htm
- [11]. Partition Chromatography http://media.rsc.org/Modern%20chemical%20techniques/MCT5%20Chromatography.pdf
- [12]. Ion Exchange Chromatographyhttp://www.gelifesciences.com/webapp/wcs/stores/servlet/catalog/en/GELifeSciences-IN/products/ionexchange-chromatography-iex/
- [13]. Ion Exchange Chromatographyhttp://wolfson.huji.ac.il/purification/PDF/IonExchange/AMERSHAM_iIEXandChromatofocManual.pdf

of Terbutaline and Theophylline was found to be simple, precise, accurate and high resolution and shorter retention time makes this method more acceptable and cost effective and it can be effectively applied for routine analysis in research institutions, quality control department in industries, approved testing laboratories, biopharmaceutical and bio-equivalence studies and in clinical pharmacokinetic studies in near future.