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This document explores the transformative impact of Artificial Intelligence
Published on: 14.01.26 (AI) and technological downsizing on the pharmaceutical and analytical
industries. artificial intelligence refers to the ability of machine learning
systems to carry out cognitive tasks, including visual perception ,reasoning

Published by: Jearning ,and decision making, is vital for managing the large datasets
Futuristic Publications generated by data digitalization in pharmaceuticals. Using advanced tools

and networks, core Al technologies like Machine Learning (ML) and Deep
2026| All rights reserved. Learning (DL) replicate human cognitive abilities. artificial intelligence

plays a role at every phase of the pharmaceutical product life cycle,
P~ including drug discovery (finding compounds, verifying targets, and
optimizing structure), clinical trial design (patient selection and adherence
monitoring), manufacturing (quality control, customized dosing), and
product management.
Simultaneously, technological miniaturization, driven by power-efficient
designs, breakthroughs in semiconductor technology, and microfabrication
procedures, is transforming analytical processes. Significant advantages of
miniaturization include lowering the quantity of the sample needed, using
fewer chemicals and solvents, cutting waste, boosting portability and power
economy, improving sensitivity, and increasing speed (sample throughput).
While practically every stage of the analytical process has been reduced,
detection and data processing have attained an excellent degree of
downsizing. In essence, the convergence of powerful Al capabilities and
breakthrough miniaturized technologies is opening the path for more
efficient, precise, and sustainable procedures throughout drug development
and analytical research.
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INTRODUCTION

Robotics relies heavily on deep learning (DL), machine learning (ML), and artificial intelligence (AI) (1). The
ability of a machine to perform tasks that often require human intellect, like speech recognition, natural
language comprehension, and decision-making, is referred to as artificial intelligence (AI). With the help of AT,
robots can perceive and interact with their environment, make decisions, and complete challenging jobs. (2). A
subfield of artificial intelligence called "machine learning" employs algorithms to enable robots to learn from
data and improve over time (3). Artificial neural networks are employed in deep learning, a M. Soori, B.
Arezoo and R. Dastres Cognitive Robotics 3 (2023) 54-70 type of machine learning (ML), to enable
computers learn from enormous amounts of data (4).However, when these procedures reached higher degrees
of maturity, it became increasingly obvious that sample preparation remains critical, dictating the success and
reliability of any analytical procedure, despite the advanced nature of the instruments. The sample preparation
process, particularly the extraction step, plays a crucial role in establishing the precision and reliability of the
analysis of target compounds. This stage is critical for removing matrix interferences, separating, and
concentrating analytes, ensuring high-quality results.

Artificial Intelligence (AI) has been recognised as one of the most recent, essential advancements of the
convergence in electronic markets (5) and has become an increasingly relevant topic for information systems
(IS) research (6);(7) While most of the literature focuses on creating Al that can replicate and replace people
(8);(9) IS research in general and decision support systems (DSS) research in particular highlight how Al may
help humans (10).A possible route for combining Al research from several domains is provided by recent
studies in hybrid intelligence (HI) and human-AI cooperation (11).

THINGS TO KNOW ABOUT ARTIFICIAL INTELLIGENCE

The pharmaceutical industry has seen a sharp rise in data digitization in recent years. The difficulty of
gathering, analyzing, and using that knowledge to address challenging healthcare issues is a result of this
digitalization (12). This encourages the application of Al, because it can manage massive volumes of data with
greater automation (13). Al is a technology-based system that mimics human intellect through a variety of
sophisticated tools and networks. Nevertheless, it does not pose a risk of full substitution for human physical
involvement (14);(15).

Recent Al definitions transfer the human intelligence idea to machines in its entirety as “the ability of a
machine to perform cognitive functions that we identify with human minds, such as perceiving, reasoning,
learning, interacting with the environment, problem solving, decision-making, and even exhibiting creativity”
(16) The Turing test (17). can be used to determine if Al instantiations can execute human tasks at least as well
as humans (18). Finally, the AI is viewed by the rational agent stream as either an intelligent (19) or
reasonable (20) agent. 3 In addition to acting independently, this agent aims to achieve the rationally optimal
result.

LEARNING MACHINES

ML is seen by several academics as a (sole) component of Al (21) (22) (23) In general, learning is an essential
element of human cognition (24) In order to better comprehend incoming information, humans use abstract
knowledge to digest large amounts of data.

The model can learn "on its own," meaning that no manual modification or programming of rules or problem-
solving techniques is needed during the learning process. More specifically, supervised machine learning
techniques always seek to develop a model by using an algorithm on a collection of known data points in order
to obtain understanding of an unknown set of data (25).
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Fig.1 Drug delivery using machine learning algorithms is utilised to treat infectious disease(26).

Al IN PHARMACEUTICAL PRODUCT LIFECYCLES

Given that Al can support rational drug design (27). aid in decision-making, determine the most appropriate
therapeutic strategy for a patient , including customized medications, and manage the clinical data generated and
use it for future drug development (28), it is possible to envision its involvement in the development of a
pharmaceutical product from the bench to the bedside. Eularis created E-VAI, an analytical and decision-
making Al platform that predicts important factors in pharmaceutical sales by using ML algorithms and an
intuitive user interface to create analytical roadmaps based on competitors, important stakeholders, and currently
held market share (29) thus assisting marketing leaders to allocate resources for optimal market share gain,
reversing poor sales and enabled them to forecast where to make investments. Various uses of Al in the creation

and discovery of drug.
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Fig.3 Applications of artificial intelligence (AI) in different subfields of the pharmaceutical industry , from
drug discovery to pharmaceutical product management

Al IN DRUG DISCOVERY

The development of multiple pharmacological compounds is facilitated by the huge chemical space, which
contains more than 1060 molecules (30) However, The medication development process is
limited by the lack of sophisticated technologies, which makes it a costly and time-consuming operation that
Al can help with (31) Al is able to identify hit and lead compounds, validate drug targets more quickly, and
optimize drug structure design (32).

Despite its advantages, Al faces certain serious data chal- lenges, such as the magnitude, growth, diversity, and
uncertainty of the data. The data sets accessible for drug development at pharmaceutical companies can
comprise millions of molecules, and typical ML methods might lack the capacity to manage these forms of

data .
Drug design techniques, such as cou- lomb matrices and molecular fingerprint recognition, examine the

physical, chemical, and toxicological profiles to pick a lead compound (33) The desired chemical structure of a
compound can be predicted using a variety of factors, including predictive models, molecular similarity, the
process of molecule synthesis, and the use of in silico techniques (34).

Another strategy employed a multi objective automated replacement algorithm to optimize the potency
profile of a cyclin-dependent kinase-2 inhibitor by examining its form similarity, biochemical activity, and
physicochemical properties (35).
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AI IN CLINICAL TRIAL DESIGN

Clinical trials, which take six to seven years and require a significant financial investment, are aimed to
identifying the safety and effectiveness of a drug product in humans for a specific illness condition. However,
the industry suffers a huge loss as just one in ten compounds that undergo these trials are successfully cleared
(36).

The enrolment of patients occupies one-third of the clinical trial timeline. The success of a clinical trial can
be secured by the finding appropriate patients, which would otherwise result in about 86% of instances of
failure (37). Al can help choose just a certain sick

population for recruitment in Phase II and III of clinical trials by applying patient-specific genome—
exposome profile analysis, which can help in early prediction of the available drug targets in the patients
selected (38) ; (39).

Preclinical discovery of molecules as well as predicting lead compounds before the start of clinical trials by
using other aspects of Al such as predictive ML and other reasoning techniques, help in the early prediction of
lead molecules that would pass clinical trials with consideration of the selected patient population [101].

By closely monitoring the patients and assisting them in adhering to the intended clinical trial protocol, this
can be prevented [102]. Ai Cure created mobile software that tracked patients with schizophrenia's regular
medication intake in a Phase II trial, increasing patient adherence by 25% and guaranteeing the clinical trial's
successful conclusion [19].

Al IN PHARMACEUTICAL MANUFACTURE

Modern manufacturing systems are attempting to impart human knowledge to machines, constantly
altering production practices due to the growing complexity of manufacturing processes and the growing
demand for efficiency and higher-quality products [88].Similar systems, such as direct numerical simulations
and large eddy simulations, incorporate advanced ways to handle compli- cated flow problems in
manufacturing (40).

The estimated completion of granulation in granulators of capacities ranging from 25 to 600 I can be done
efficiently using Al technology (41). The technology and neuro-fuzzy logic correlated important variables to
their answers. In order to forecast the amount of granulation fluid to be supplied, the necessary speed, and the
impeller diameter in both geometrically identical and dissimilar granulators, they developed a polynomial
equation (42).

Al technologies called meta-classifiers and tablet-classifiers assist in controlling the final product's quality
standards by pointing out potential manufacturing errors in tablets (43). A system that can use a processor that
receives patient data to determine the most ideal combination of medication and dosing regimen for each
patient and construct the desired transdermal patch appropriately has been the subject of a patent application
(44).

Technological Advances in Miniaturization Consumer electronics have seen a significant transformation
thanks to the ongoing advancements in shrinking technologies, which have allowed products to be designed in
smaller formats , effective, and high-performing. Innovations in semiconductor technologies, microfabrication
methods, and power-efficient designs are driving this advancement.

1. Power-Efficient Design: (45) emphasize how crucial power-efficient designs are for smaller consumer
electronics. Innovations such as system-on-chip (SoC) technology and energy-efficient algorithms
lower power usage while maintaining excellent performance. These developments are essential for
portable electronics since they increase usability and battery life.

2. Advances in Semiconductor Technologies: (46) emphasizes the relevance of semiconductor
technologies in miniaturization. Smaller and faster components can be achieved through technological
innovations like FinFETs, multi-gate transistors, and improved lithography. These developments lay the
groundwork for incorporating sophisticated features into small consumer electronics

3. Microfabrication Techniques: (47) talks on microfabrication methods such nanoscale patterning, thin-
film deposition, and precision etching. These methods allow for the creation of incredibly tiny parts
while maintaining performance and structural integrity. Applications include sensors, actuators, and
MEMS, important for current consumer electronics.
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Together, these technical developments propel miniaturization, resulting in consumer gadgets that are
increasingly compact, effective, and multipurpose.

Table 1: Miniaturization technological advancements [9], [10], [11]

Innovation type Key contributions Percentage contribution

Power— Efficient Design Reduced power consumptlon,
Improved battery life 35%

Smaller, faster, Efficient

Semiconductor Technologies .
g transistors 40%

Ultra — small components with

Microfabrication Techniques high perfomence 25%

MINIATURIZATION IN CONSUMER ELECTRONICS

As a result of progress in optical component design, packaging technologies, and artificial intelligence,
consumer electronics have become much more miniature. These advancements make it possible to produce
more compact, effective, and multipurpose gadgets that meet the demands of contemporary consumers.

1. ROLE OF AI AND MACHINE LEARNING:

(48) AI and machine learning play a crucial role in optimizing the design and manufacturing processes for
miniaturized devices. In smaller devices , these approaches enhance the precision of component placement ,
lower design complexity, and boost energy efficiency. Additionally, Al helps with predictive modeling to
assess dependability and performance, guaranteeing quality in small consumer devices.

2. ADVANCED PACKAGING TECHNOLOGIES:

(49) highlight how crucial advanced packaging is for small electronics. Compact designs with high
functionality and performance are made possible by technologies like chip-on-chip integration and system-in-
package (SiP).

3. MINIATURIZATION OF OPTICAL COMPONENTS:

(50) discuss advancements in the miniaturization of optical components for consumer devices. High-
performance optical systems in small form factors are made possible by methods like integrated photonics,
compact waveguides, and micro-lens manufacturing. These innovations are critical for applications such as
cameras, augmented reality devices, and advanced displays in consumer electronics.

All of the procedures required to extract analytical information from a sample—sample collection and
preservation, sample preparation, separation, detection, data processing, and final decision—are included in the
analytical process (Figure 3). These days, practically every stage of the analytical process has undergone
downsizing.

However, the different steps of the analytical process have not been miniaturized to the same extent. For
instance, sample collection and preservation is the step of the analytical process less subjected to the benefits
of miniaturization, even though some autono mous and remote sensing analytical microsystems have been

reported. Conversely, data acquisition and processing have achieved an excellent degree of miniaturiza tion.
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1. Reduction of sample amount:

The necessary sample volume required to carry out an appropriate analysis can be highly reduced by
scaling down the sample preparation, separation and detection techniques. This is especially advantageous
when dealing with scarce and/or precious samples.

2. Decreased consumption of chemicals and solvents:

A drastic decrease in the amount of analytical reagents and organic solvents that are needed can result
from the miniaturization of any analytical process step. This is especially important in the case of analytical
methods involving expensive and precious reagents such as enzymes and immunochemicals, as well as in the
case of analytical meth odologies involving toxic reagents and/or organic solvents.

The miniaturization of separation techniques enables a significant reduction of mobile phase or
electrolyte, as well as the amount of stationary phase materials.

3. Reduction of associated wastes:

As a result of the above mentioned advantages, the wastes generated along the whole analytical process
can be highly reduced, thus resulting in more sustainable methodologies. Recycling and recovery of chemicals
and organic solvents present in wastes, as well as the online genera tion of clean wastes are important tasks
aiming to be adopted in analytical labo ratories (51)

4. Improved sensitivity:

Sensitivity of analytical methods can be increased through the utilization of a suitable miniaturized
sample preparation technique and, in certain cases, by miniaturizing detection systems.

The improved design of recently developed analytical instrumentation can also yield increased sensitivity
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by using reduced sample volumes, although in several cases the sensitivity can be significantly deteriorated
when the instru mentation is miniaturized. Advances in detection systems can minimize the loss of sensitivity.

5. Rapidity:

In analytical labs, time is a crucial factor. For this reason, the sample throughput plays a crucial role in
technique development. The development of compact sample preparation, separation and detection devices can
sig nificantly minimize the time needed to execute a single analysis. for example reduced usage of reagents and
solvents, lower energy requirements and lesser amounts of trash.

6. Portability:

The downsizing of part or the whole of the analytical process steps contributes greatly to the mobility of
analytical systems to the sampling location. Furthermore, portable analytical devices give timely and valuable
information and limit the danger of sample decomposition and contamination during sample storage and trans
portation.

7. Power consumption:

The reduction of analytical systems often requires a reduction of the power requirements. Because of this,
smaller devices may run on batteries, which increases their portability.

MINIATURIZING DETECTION TECHNIQUES

The breakthroughs obtained in sectors such as electronics, engineering and material sciences have
permitted the shrinking of analytical detection systems. The characteristic qualities of MEMS fabrication
techniques, namely miniaturization, multiplicity and microelectronics, have enabled the batch manufacture of
small sized detection systems (52). Miniaturization of analytical detection techniques requires the size
reduction of different elements of conventionally-sized instruments without ignoring the performance of each
component, in such a way that the overall miniaturized detection techniques yield comparable or improved
analytical performance.

1. Molecular Spectrometry
2. Atomic Spectrometry

3. Mass Spectrometry
4,

ElectroChemical Techniques
CONCLUSION :

The pharmaceutical and analytical industries are undergoing a profound transformation driven by the
convergence of Artificial Intelligence (AI) and technological miniaturization. Al, encompassing Machine
Learning and Deep Learning, acts as a vital tool for managing and leveraging the massive data generated by
digitization. Its application extend across the entire product life cycle, from accelerating drug discovery and
target validation to optimizing clinical trial design and ensuring quality control and customized dosing in
manufacturing.

Concurrently, miniaturization, fueled by semiconductor breakthroughs and microfabrication, is revolutionizing
analytical systems. This downscaling offers major advantages, including reduced sample and chemical
consumption, minimal waste, improved sensitivity, and enhanced portability. While detection and data
processing have achieved an excellent degree of miniaturization, nearly every step of the analytical process has
benefited. Ultimately, the integration of these powerful AI capabilities and breakthrough miniaturized
technologies paves the way for more efficient, precise, and sustainable procedures in drug development and
analytical research.
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