

# Journal of Pharma Creations (JPC)

JPC |Vol.11 | Issue 2 | Apr - Jun -2024 www.pharmacreations.com

DOI: https://doi.org/10.61096/jpc.v11.iss2.2024.123-130

Research

# Formulation Development And Invitro Evaluations Of Zafirlukast Pulsatile Tablets

# Arjun.Goje, Rubesh.S, Sunitha, Shabaaz.Syed, Thirupathi.V, Vamshi.J, Zehra.T.Syeda

Department of pharmaceutics, Teegala Ram Reddy College of Pharmacy, Telangana, India

Address for Correspondence: Arjun.Goje Email: Teegalaramreddymailbox@gmail.com

| Check for<br>updates                                          | Abstract                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Published on: 18 May 2024                                     | From the above experimental results it can be concluded that, Formulated tablets gave satisfactory results for various physicochemical parameters like hardness, friability, thickness, weight variation and content uniformity. HPMC and                                                                                              |
| Published by:<br>DrSriram Publications                        | Ethyl cellulose has predominant effect on the lag time, while also shows significant effect on drug release. Zafirlukast Press coated tablet shows a delayed release pattern. Among all the core tablet formulation F8 was selected based on drug release within a given period of time. In-vitro release rate studies showed that the |
| 2024 All rights reserved.                                     | maximum drug release was observed in P3F8 formulations was optimized based<br>on less amount of drug release during lag time. FT-IR studies revealed that there<br>was no interaction between Zafirlukast and the polymers.                                                                                                            |
| Creative Commons<br>Attribution 4.0 International<br>License. | Keywords: Zafirlukast, Controlled drug delivery system, Press- coated tablets                                                                                                                                                                                                                                                          |

# INTRODUCTION

Controlled drug delivery systems have acquired a centre stage in the area of pharmaceutical R &D sector. Such systems offer temporal &/or spatial control over the release of drug and grant a new lease of life to a drug molecule in terms of controlled drug delivery systems for obvious advantages of oral route of drug administration. These dosage forms offer many advantages, such as nearly constant drug level at the site of action, prevention of peak-valley fluctuation, reduction in dose of drug, reduced dosage frequency, avoidance of side effects and improved patient compliance. In such systems the drug release commences as soon as the dosage form is administered as in the case of conventional dosage forms. However, there are certain conditions, which demand release of drug after a lag time. Such a release pattern is known as pulsatile release.<sup>1</sup>

ThePulsincap® system consists of a water-insoluble capsule body (exposing the body to formaldehyde vapor which may be produced by the addition of trioxymethylene tablets or potassium permanganate to formalin or any other method), filled with the drug formulation and plugged with a swellable hydrogel at the open end<sup>2</sup>. Upon contact with dissolution media or gastrointestinal fluid, the plug swells and comes out of the capsule after a lag time, followed by a rapid release of the contents<sup>3,4</sup>. The lag time prior to the drug release can be controlled by the dimension and the position of the drug. In order to assure a rapid release of the drug content, effervescent agents or disintegrants were added to the drug formulation, especially with water-insoluble drug. Studies in animals and healthy volunteers proved the tolerability of the formulation (e.g., absence of gastrointestinal irritation)<sup>5</sup>. In

order to overcome the potential problem of variable gastric residence time of a single unit dosage forms, the Pulsincap® system was coated with an enteric layer, which dissolved upon reaching the higher pH regions of the small intestine<sup>6</sup>.

Delivery systems with a pulsatile release pattern are receiving increasing interest for the development of dosage forms, because conventional systems with acontinuous release are not ideal. Most conventional oral controlled release drug delivery systems release the drug with constant or variable release rates. A pulsatile release profile is characterized by a time period of no release rates (lag time) followed by a rapid and complete release<sup>7.8</sup>.

These dosage forms offer many advantages such as

- $\checkmark$  Nearly constant drug levels at the site of action.
- ✓ Avoidance of undesirable side effects.
- ✓ Reduced dose and
- ✓ Improved patient compliance.
- ✓ Used for drugs with chronopharmacological behaviour, a high first pass effect the requirement.

## Drug profile Name:Zafirlukast Structure: Zafirlukast



# Brand names: Accolate

**Weight:** Average: 575.675 Monoisotopic: 575.209006493

**Chemical Formula;** C<sub>31</sub>H<sub>33</sub>N<sub>3</sub>O<sub>6</sub>S

**IUPAC Name:** cyclopentyl N-[3-({2-methoxy-4-[(2-methyl benzene sulfonyl) carbamoyl] phenyl} methyl)-1-methyl-1H-indol-5-yl]carbamate

# MATERIALS AND METHODS Materials used

| Table 1: The Materials used in the press | ent work are as follows. |
|------------------------------------------|--------------------------|
|------------------------------------------|--------------------------|

| S NO | Materials                   | Name of the supplier      |
|------|-----------------------------|---------------------------|
| 1    | Zafirlukast                 | Chandra labs, hyd         |
| 2    | Cross povidone              | MYL CHEM Mumbai           |
| 3    | Sodium starch glycolate     | MYL CHEM Mumbai           |
| 4    | Magnesium stearate          | S.D Fine chem. LTD Mumbai |
| 5    | Micro crystalline cellulose | S.D Fine chem. LTD Mumbai |
| 6    | Cross caramellose sodium    | MYL CHEM Mumbai           |
| 7    | HPMC                        | S.D Fine chem. LTD Mumbai |

# **Equipments used**

#### Table 2: The equipments used in the present work are as follows

| S.No | Instruments                  | Source                |
|------|------------------------------|-----------------------|
| 1    | Electronic balance           | Shimadzu              |
| 2    | UV/Visible Spectrophotometer | Corporation-BL-220H   |
| 3    | FTIR spectrophotometer       | Corporation japan     |
| 4    | Magnetic stirrer             | Remi motor equipments |

| 5 | Dissolution apparatus | Shimadzu                     |
|---|-----------------------|------------------------------|
| 6 | Oven                  | Biotech india.               |
| 7 | pH meter              | Shital scientific industries |
| 8 | Compression machine   | Cadmach machinery            |

# METHODOLOGY

#### Preformulation studies<sup>17</sup>

Organoleptic evaluation

a) Color

b) Odour

c) Taste

# Analytical methods for the estimation of zafirlukast<sup>36</sup> Determination of $\lambda$ max for Zafirlukast

On the basis of preliminary identification test, it was concluded that the drug complied the preliminary identification. From the scanning of drug, it was concluded that the drug had  $\lambda$  max of 242 nm.

#### Preparation of standard calibration curve of Zafirlukast

The standard calibration curve for Zafirlukast was prepared using 0.2 % of SLS.

#### Standard solution:

10 mg of Zafirlukastwas dissolved in few ml of methanol and make up with 0.2 % of SLS to give a concentration of 1 mg/ ml (1000  $\mu$ g/ml).

#### **Stock solution**

From standard solution take 10 ml of solution in 100 ml of solution to produce the 100  $\mu$ g/ml concentration and take from the 100  $\mu$ g/ml of the solution. Aliquots of 0.5, 1, 1.5, 2, 2.5 ml of stock solution were pipette out in 10 ml volumetric flask. The volume was made up to mark with SLS solution to produce concentration as 5, 10, 15, 20, and 25  $\mu$ g/ml of Zafirlukast respectively.

The absorbance of prepared solution of Zafirlukast was measured at 242 nm in Shimadzu UV/visible 1700 spectrophotometer against 0.2 % of SLS solution as blank. The absorbance data for standard calibration curve are given in Table and plotted graphically as shown in the Figure. The standard calibration curve yields a straight line, which shows that drug obeys Beer's law in the concentration range of 5 to 25 mcg/ml.

#### Drug – Excipient Compatibility Study

Infrared spectroscopy is a useful analytical technique utilized to check the chemical interaction between the drug and excipients used in the formulation.1-2 mg of solid fine powder of drug and 200-300 mg of dry powder of KBr(IR grade) were taken in a mortar and mixed well with the help of a spatula. Spectrum measurement was carried out using KBr disk method in the wavelength region of 4000-400cm<sup>-1</sup> by FTIR spectrophotometer

#### Formulation development<sup>9,10</sup>

## Formulation of core tablets by direct compression:

- The inner core tablets were prepared by using direct compression method.
- As shown in Table powder mixtures of Zafirlukast, microcrystalline cellulose, cross-carmellose sodium (Ac-Di-Sol),SSG, crospovidone ingredients were dry blended for 20 min. followed by addition of Magnesium Stearate.
- The mixtures were then further blended for 10 min., 200mg of resultant powder blend was manually compressed using KBr hydraulic press at a pressure of 1 ton, with 8mm punch and die to obtain the core tablet.

| Ingredients        | F 1  | F2   | F 3  | F 4  | F5   | F6   | F7   | F8   | F9   |
|--------------------|------|------|------|------|------|------|------|------|------|
| Zafirlukast        | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 10   |
| HPC                | 10mg | -    | -    | 20mg | -    | -    | 25mg |      | -    |
| CCS                | -    | 10mg | -    | -    | 20mg | -    | -    | 25mg | -    |
| SSG                | -    | -    | 10mg | -    | -    | 20mg | -    | -    | 25mg |
| Magnesium stearate | 4mg  |

#### Table 3: Composition of core tablets

| MCC      |       | 176mg | 176mg | 176mg | 166mg | 166mg | 166mg   | 161mg | 161mg | 161mg |
|----------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|
| Total wt |       | 200   | 200   | 200   | 200   | 200   | 200     | 200   | 200   | 200   |
|          | MCC M | . 11. | 11 1  | 700 0 | 11    | 1.    | 000 0 1 | 1     | 1 1 . |       |

MCC: Micro crystalline cellulose, CCS: Cross caramellose sodium, SSG: Sodium starch glycolate

## Preparation of press-coated tablets<sup>9</sup>

The core tablets were press-coated with 300mg of mixed blend as given in Table. 150mg of barrier layer material was weighed and transferred into a 12mm die then the core tablet was placed manually at the centre. The remaining 150mg of the barrier layer material was added into the die and compressed at a pressure of 5 tons for 3min using KBr hydraulic press.

## Table4: Composition of Zafirlukast press-coated Tablets

| Press coat      | P1 F8 (mg) | P2 F8 (mg) | P3 F8 (mg) | P4 F8 (mg) |
|-----------------|------------|------------|------------|------------|
| HPMC            | 150        | 100        |            | 300        |
| Ethyl cellulose | 150        | 200        | 300        |            |
| Total wt(mg)    | 500        | 500        | 500        | 500        |

# **RESULTS AND DISCUSSIONS**

Pre-formulation studies **Description** 

#### Table 5: Table showing the description of Zafirlukast (API)

| Test   | Description                           |
|--------|---------------------------------------|
| Colour | white to pale yellow amorphous powder |
| Odour  | Free of odour                         |

Solubility

### Table 6: Table showing the Solubility of zafirlukast (API) in various solvents.

| Solvents          | Solubility            |
|-------------------|-----------------------|
| Water             | practically insoluble |
| dimethylsulfoxide | Soluble               |
| acetone           | Soluble               |
| Methanol          | slightly soluble      |

# **Melting Point**

#### Table 7: Table showing the melting point of API's

| Material    | Melting Point |
|-------------|---------------|
| zafirlukast | 139 °C        |

**Standard Calibration Curve For Zafirlukast** 

Table 8: Calibration Curve Data of Zafirlukastin 0.2% SLS

| S.No | Concentration | Absorbance |
|------|---------------|------------|
| 1    | 0             | 0          |
| 2    | 5             | 0.230      |
| 3    | 10            | 0.366      |
| 4    | 15            | 0.570      |
| 5    | 20            | 0.727      |
| 6    | 25            | 0.908      |



Fig 1: Clibration curve of zafirlukastin 0.2% SLS



Fig 2: UV Spectrum for zafirlukast at 242nm



Fig 3: FTIR Spectra of Zafirlukast pure drug



Fig 4: FTIR Spectra of Zafirlukast final formulation

# **Evaluation Parameters For Core Tablets**

| S.<br>No | Physical<br>parameter         | F 1      | F 2            | F 3  | F 4       | F 5   | F 6   | F 7       | F 8  | F 9           |
|----------|-------------------------------|----------|----------------|------|-----------|-------|-------|-----------|------|---------------|
| 1        | Weight variation              | 199      | 201            | 199  | 198       | 202   | 200   | 200       | 198  | 201           |
| 2        | Hardness(Kg/cm <sup>2</sup> ) | 4.21     | 4.23           | 4.21 | 4.24      | 4.20  | 4.23  | 4.20      | 4.22 | 4.22          |
| 3        | Thickness(mm)                 | 3.34     | 3.32           | 3.34 | 3.31      | 3.35  | 3.30  | 3.31      | 3.32 | 3.35          |
| 4        | Friability %                  | 0.36     | 0.35           | 0.31 | 0.36      | 0.36  | 0.36  | 0.37      | 0.36 | 0.34          |
| 5        | Disintegration time           | 2<br>min | 1min<br>25 sec | 1min | 1min30sec | 40sec | 30sec | 45<br>sec | 1min | 1min20<br>sec |

# **Table 9: Physical Evaluation Parameters for Core Tablets**

**Dissolution For Core Tablets** 

#### **Table 10: Dissolution For Core Tablets**

| Dissolution | Core formulation code |      |      |      |      |      |      |       |      |
|-------------|-----------------------|------|------|------|------|------|------|-------|------|
| time(Min)   | F1                    | F2   | F3   | F4   | F5   | F6   | F7   | F8    | F9   |
| 5           | 11.4                  | 23.4 | 34.6 | 34.2 | 25.1 | 25.8 | 33.9 | 39.7  | 35.3 |
| 10          | 35.0                  | 33.1 | 46.4 | 47.3 | 49.5 | 49.2 | 44.1 | 54.25 | 44.2 |
| 15          | 49.2                  | 44.9 | 52.9 | 56.6 | 76.2 | 73.8 | 65.6 | 80.01 | 75.7 |
| 30          | 74.1                  | 69.1 | 76.4 | 79.3 | 83.5 | 82.6 | 83.6 | 99.6  | 84.2 |
| 45          | 80.5                  | 82.7 | 82.3 | 97.7 | 97.3 | 95.7 | 98.1 |       | 94.6 |
| 60          | 95.3                  | 96.5 | 95.1 |      |      |      |      |       |      |



Fig 5: Dissolution graph for core formulations F1-F9

Based on the drug release within the required time period F8 was optimized and further formulated for Zafirlukast press-coated tablets.

| S. No | Physical parameter            | P1F8 | P2F8 | P3F8 | P4F6 |
|-------|-------------------------------|------|------|------|------|
| 1     | Weight variation              | 501  | 500  | 499  | 498  |
| 2     | Hardness(Kg/cm <sup>2</sup> ) | 6.4  | 6.6  | 6.4  | 6.5  |
| 3     | Thickness(mm)                 | 4.3  | 4.4  | 4.3  | 4.4  |
| 4     | Friability %                  | 0.21 | 0.19 | 0.18 | 0.18 |

Table 11: Evaluation Parameters for Zafirlukast press-coated Tablets

# **Dissolution Data For Press-Coated Tablets**

| Time in hrs | Press coat Formulation code |       |       |       |  |  |  |
|-------------|-----------------------------|-------|-------|-------|--|--|--|
|             | P1F8                        | P2F8  | P3F8  | P4F8  |  |  |  |
| 1           | 2.89                        | 1.62  | 0     | 8.94  |  |  |  |
| 2           | 15.45                       | 18.74 | 0     | 15.65 |  |  |  |
| 3           | 40.32                       | 45.98 | 2.4   | 42.97 |  |  |  |
| 4           | 51.21                       | 56.12 | 6.4   | 60.43 |  |  |  |
| 5           | 74.22                       | 78.66 | 8.8   | 82.80 |  |  |  |
| 6           | 98.1                        | 89.90 | 12.3  | 95.63 |  |  |  |
| 7           | -                           | 95.54 | 85.63 |       |  |  |  |
| 8           | -                           |       | 99.66 |       |  |  |  |

Table 12: Dissolution data for press-coated tablets



Fig 6: Dissolution graph for press-coated tablet of formulation

From the above core formulations F8 was selected for press-coated by using different synthetic polymers (HPMC and EC) in different ratios among which P3F8 was optimized based on the lag time 6 hours and percent of drug release and also further evaluated.

#### **Stability Studies**

| <b>Fable</b> 1 | 13: | Stab | oility | Studies |
|----------------|-----|------|--------|---------|
|----------------|-----|------|--------|---------|

| Cumulative % drug release during 6h |            |            |            |  |  |  |  |
|-------------------------------------|------------|------------|------------|--|--|--|--|
| Sampling interval                   | 25°C/60%RH | 30°C/65%RH | 40ºC/75%RH |  |  |  |  |
| 0 Days                              | 98.9       | 98.9       | 98.9       |  |  |  |  |
| <b>30Days</b>                       | 98.0       | 98.1       | 98.1       |  |  |  |  |
| 60 Days                             | 97.2       | 97.5       | 97.8       |  |  |  |  |

| 90 Dave | 96.8 | 96.8 | 96.8 |
|---------|------|------|------|
| 90 Days | 90.8 | 90.8 | 90.8 |

# CONCLUSION AND SUMMARY

From the above experimental results it can be concluded that, Formulated tablets gave satisfactory results for various physicochemical parameters like hardness, friability, thickness, weight variation and content uniformity. HPMC and Ethyl cellulose has predominant effect on the lag time, while also shows significant effect on drug release.

- Zafirlukast Press coated tablet shows a delayed release pattern.
- Among all the core tablet formulation F8 was selected based on drug release within agiven period of time.
- In-vitro release rate studies showed that the maximum drug release wasobserved in P3F8 formulations was optimized based on less amount of drug release during lag time.
- FT-IR studies revealed that there was no interaction between Zafirlukast and the polymers.

# REFERENCES

- Gothaskar, AV, Joshi AM, Joshi, NH, 2004. Pulsatile drug delivery system a review. Drug Del. Technol. 4, http://www.drugdeliverytech.com/id article=250.
- 2. Shivkumar HG, Promod KTM, Kashappa GD. Pulsatile drug delivery systems .Indian JPharmaEdu 2003 July-Sep : 37(3) : 125:8.
- Sarasija S, Stutie P. Chronotherapeutics: Emerging role of biorhythms in optimizing drug therapy. Indian J Phrm Sci. 2005 Mar;67(2):135-40.https://www.ijpsonline.com/articles/chronotherapeutics--emergingrole-of-biorhythms-in-optimizing-drug-therapy.pdf
- 4. Ross AC, Macrae RJ, Walther M, Stevens HN. Chronopharmaceutical drug delivery from a pulsatile capsule device based on programmable erosion. Journal of pharmacy and pharmacology. 2000 Aug;52(8):903-9.https://academic.oup.com/jpp/article-abstract/52/8/903/6157620
- Mastiholimath VS, Dandagi PM, Jain SS, Gadad AP, Kulkarni AR. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma. International journal of pharmaceutics. 2007 Jan 2;328(1):49-56.https://www.sciencedirect.com/science/article/pii/S0378517306006375
- 6. Abraham S, Srinath MS. Development of modified pulsincap drug delivery system of metronidazole for drug targeting. Indian J Pharm Sci.2007; 69(1):18-23.Doi: 10.4103/0250-474X.32102
- Samantha MK, et al. Designed and evaluated Pulsincap drug delivery system of Salbutamol sulphate for drug targeting to colon in disease condition like asthma. Ind. J Pharmel Sci. 2000; 62(2): 102-107. https://www.ijpsonline.com/articles/development-of-pulsincap-drug-delivery-of-salbutamol-sulphate-fordrug-targeting.pdf
- 8. Jeong YI, Ohno T, Hu Z, Yoshikawa Y, Shibata N, Nagata S, Takada K. Evaluation of an intestinal pressure-controlled colon delivery capsules prepared by a dipping method. J Control Release. 2001 Apr 2;71(2):175-82. doi: 10.1016/s0168-3659(01)00211-5. PMID: 11274749.
- Sangalli ME, Maroni A, Zema L, Busetti C, Giordano F, Gazzaniga A. In vitro and in vivo evaluation of an oral system for time and/or site-specific drug delivery. J Control Release. 2001 May 18;73(1):103-10. doi: 10.1016/s0168-3659(01)00291-7. PMID: 11337063.
- Stevens HN, Wilson CG, Welling PG, Bakhshaee M, Binns JS, Perkins AC, Frier M, Blackshaw EP, Frame MW, Nichols DJ, Humphrey MJ, Wicks SR. Evaluation of Pulsincap to provide regional delivery of dofetilide to the human GI tract. Int J Pharm. 2002 Apr 2;236(1-2):27-34. doi: 10.1016/s0378-5173(02)00012-1. PMID: 11891067.